Catedra 18 -- PRACTICA PARA LA SOLEMNE

Problema 1 -- No es tipo solemne

Conteste en el espacio indicado a qué término se refiere cada definicién.
Operacion de pegar dos strings:

Tipo de valor al que corresponden True y False:

Sangria desde el lado izquierdo de las lineas:

La instruccion elif es la contraccién de:

Tipo de valor al que corresponden 0, 1, 2, etc:

En castellano decimos subcadena, en inglés es:

La instruccion while se lee en castellano como:

Método para contar subcadenas dentro de un string:
Método que cuenta cuantos caracteres tiene un string:
Método que verifica si un string consiste sélo de digitos:

Problema 2 -- Tipo solemne

Escriba un programa que reciba una cantidad indefinida de nimeros y que los multiplique. El programa

debera dejar de recibir inputs una vez que reciba el input FIN.

Caso 1. Inputs: Caso 2. Inputs: Caso 3. Inputs:
10 7 25
50 FIN 5
FIN 5
FIN
Output: Output: Output:
500 7 625

Caso 4. Inputs:
11

11

FIN

Output:
121

Problema 3 -- No es tipo solemne

X = input() A continuacién escriba qué imprime este programa
num_previo = None ante los inputs 7, 1, 4, 4, 2, fin.
while x != '"fin':

este_num = float(x)

if num_previo == None:

num_previo = este_num
media = (este_num + num_previo)/2
print(media)
num_previo = este_num
X = dnput()

Problema 4 -- Tipo solemne
Escriba un programa que reciba un string. Este string consistird en niimeros separados por espacios. Su
programa deberd imprimir cada nimero en lineas separadas.

Caso 1. Input: Caso 2. Input: Caso 3. Input: Caso 4. Input:
123 24 55 15 12345 30512 9652 391904
Output: Output: Output: Output:
123 15 1 30512
24 2 9652
55 3 391904
4
5

RESPUESTAS

Aqui van las soluciones con comentarios.

Problema 1 -- No es tipo solemne
Conteste en el espacio indicado a qué término se refiere cada definicion.

Operacién de pegar dos strings: CONCATENACION
Concatenar y concatenacion son palabras que hemos usado recurrentemente en el curso. Como
recordaremos, concatenar significa conectar dos cadenas, ya que, etimolégicamente, catena quiere
decir cadena. De hecho, castellano, concatenar es sinébnimo de encadenar.

Tipo de valor al que corresponden True y False: bool (o booleano)
Llamamos booleanos a los valores de verdad, en honor al matematico-logicista George Boole.

Sangria desde el lado izquierdo de las lineas: INDENTACION
El término indentacion es de uso tipico del mundo editorial. Se refiere a la distancia entre el texto y el
lado izquierdo de la hoja.

La instruccidn elif es la contraccion de: else + if

Tipo de valor al que corresponden 0, 1, 2, etc: int (entero)
En Python, el nombre exacto es int, que es abreviatura de integer o integral, que significa entero.

En castellano decimos subcadena, en inglés es: SUBSTRING
Recordemos que string se traduce como cadena en castellano, cuando hablamos de computacion.

La instrucciéon while se lee en castellano como: MIENTRAS

Meétodo para contar subcadenas dentro de un string: count
Este método se usa asi: para contar las ocurrencias del string x dentro del string y, escribimos:
y.count(x). Aqui, x e y pueden ser variables o directamente los strings. Por ejemplo, podemos escribir
"Solemne 1".count("e") para recibir el valor 2.

Método que cuenta cuantos caracteres tiene un string: len
La funcion len es esencial para contar el largo de cosas en Python. Asi, len("Solemne 1") nos devuelve
9 (7 letras en Solemne, 1 digito, 1 espacio).

Método que verifica si un string consiste sélo de digitos: isdigit
Por ejemplo, "1234".isdigit() nos devuelve True, mientras que "Solemne"isdigit() nos devuelve False.

Problema 2 -- Tipo solemne
Escriba un programa que reciba una cantidad indefinida de nimeros y que los multiplique. El programa
debera dejar de recibir inputs una vez que reciba el input FIN.

Caso 1. Inputs: Caso 2. Inputs: Caso 3. Inputs: Caso 4. Inputs:
10 7 25 11

50 FIN 5 11

FIN 5 FIN

FIN

Output: Output: Output: Output:

500 7 625 121
Solucién

Vayamos escribiendo el codigo paso a paso. El codigo recién agregado ird resaltado.

:Qué queremos? Calcular una multiplicacion de varios nimeros. Por lo tanto, debemos crear una variable
para calcular (construir) nuestra respuesta, y esta variable debe iniciar valiendo 1.

‘r=l

Ojo, si esta variable iniciara con el valor O, nos arruinaria todo, pues cualquier cosa multiplicada por cero nos
da cero. Esto no ocurre si iniciamos con el valor 1.

Como recibimos una cantidad indefinida de nimeros (que son inputs), entonces necesitamos un while. Y
vamos a repetir mientras no recibamos el string "FIN". Actualizamos el cédigo:

r =1
while x != "FIN":

Hemos usado x en la guarda del while, jpero no hemos definido esta variable! Como se refiere a los inputs,
corregimos:

r =1
X = dnput()
while x != "FIN":

Ya, veamos que el while es basicamente un if, pero que se vuelve a evaluar hasta que la guarda se hace False.
Por eso, si x! = "FIN", entonces x debe ser un niimero entero (per enunciado). Convertimos x en entero y lo
guardamos en la variable n:

r =1

X = dnput()

while x != "FIN":
n = int(x)

Pero ese nimero entero n (tipo int) no nos sirve ahi. Nosotros queremos actualizar r, que es nuestra variable
de respuesta; debemos multiplicarla por n. Por ende:

r =1

X = dnput()

while x != "FIN":
n = int(x)
r *= n

Ahora vemos que no estamos pidiendo inputs otra vez. S6lo hemos pedido un input al principio. Para volver a
pedir un input, lo agregamos al final del bloque indentado del while. Como usamos para variable x para los
inputs:

r =1
X = dnput()
while x != "FIN":
n = int(x)
r *= n
X = input()

Presto! Ahora nos queda presentar la respuesta que hemos construido. Esto lo hacemos al final de nuestro
cédigo:

r
X

1
input()

while x

= "FIN":

n = int(x)
r *=n

X = input()

print(r)

En resumen, el cédigo queda como:

r
X

1
input()

while x
n:

= "FIN":
int(x)

r *= n
X = dinput()

print(r)

Este codigo ha sido completado.

Problema 3 -- No es tipo solemne

A continuacién escriba qué imprime este programa
ante los inputs 7, 1, 4, 4, 2, fin.

X = input()

num_previo = None

while x != 'fin':
este_num = float(x)
if num_previo == None:

num_previo = este_num

media = (este_num + num_previo)/2
print(media)
num_previo = este_num
X = dnput()

Solucion

Es muy importante ser capaces de interpretar cédigo por nuestra propia cuenta. Esto quiere decir que
debemos ser capaces de ejecutar el cédigo linea por linea y tener un registro de cémo se actualizan sus

variables.

La solucion en este caso es:

7.0
4.0
25
4.0
3.0

No hay mas outputs (prints) ejecutados por el programa.

Siendo muy detallados, la siguiente tabla reproduce, linea por linea, qué ocurre con el programa.

Instruccion Descripcion X num_previo | este_num | media
x = dnput() recibe '7'y lo guarda en x 7! - - -
num_previo = None define num_previo con el valor None 'T! None - -
while x != 'fin': mientras x no es 'fin' (asi es) T None - -—
(inicia el bloque indentado) 7! None - -
este_num = float(x) convierte x en flotante '7! None 7.0 --
if num_previo == None: si num_previo es None, y lo es 7! None 7.0 -=
num_previo = este_num asigna a num_previo el valor de este_num '7! 7.0 7.0 -=
media = (este_num + num_previo)/2 |asigna a media el valor 7.0 7! 7.0 7.0 7.0
print(media) imprime: 7.0 T 7.0 7.0 7.0
num_previo = este_num asigna a num_previo el valor 7.0 'T! 7.0 7.0 7.0
x = dnput() recibe el valor '1'y lo guarda en x '1’ 7.0 7.0 7.0
(termina el bloque indentado) 'l 7.0 7.0 7.0
while x != 'fin': mientras x no es 'fin' (asi es) 'l 7.0 7.0 7.0

Instruccion Descripcion X num_previo | este_num | media

(inicia el bloque indentado) 'l 7.0 7.0 7.0
este_num = float(x) convierte x en flotante 'l 7.0 1.0 7.0
if num_previo == None: si num_previo es None, pero no lo es 'l 7.0 1.0 7.0
media = (este_num + num_previo)/2 |asigna a media el valor 4.0 'l 7.0 1.0 4.0
print(media) imprime: 4.0 'l 7.0 1.0 4.0
num_previo = este_num asigna a num_previo el valor 1.0 'l 1.0 1.0 4.0
X = dnput() recibe el valor '4' y lo guarda en x '4' 1.0 1.0 4.0

(termina el bloque indentado) '4! 1.0 1.0 4.0
while x != 'fin': mientras x no es 'fin' (asi es) 4! 1.0 1.0 4.0

(inicia el bloque indentado) 4! 1.0 1.0 4.0
este_num = float(x) convierte x en flotante ‘4! 1.0 4.0 4.0
if num_previo == None: si num_previo es None, pero no lo es ‘4! 1.0 4.0 4.0
media = (este_num + num_previo)/2 |asignaa media el valor 2.5 ‘4! 1.0 4.0 2.5
print(media) imprime: 2.5 ‘4! 1.0 4.0 2.5
num_previo = este_num asigna a num_previo el valor 4.0 ‘4! 4.0 4.0 2.5
x = dnput() recibe el valor '4' y lo guarda en x '4' 4.0 4.0 2.5

(termina el bloque indentado) '4! 4.0 4.0 2.5
while x != 'fin': mientras x no es 'fin' (asi es) 4! 4.0 4.0 2.5

(inicia el bloque indentado) 4! 4.0 4.0 2.5
este_num = float(x) convierte x en flotante '4! 4.0 4.0 2.5
if num_previo == None: si num_previo es None, pero no lo es '4! 4.0 4.0 2.5
media = (este_num + num_previo) /2 |asigna a media el valor 4.0 ‘4! 4.0 4.0 4.0
print(media) imprime: 4.0 '4! 4.0 4.0 4.0
num_previo = este_num asigna a num_previo el valor 4.0 ‘4! 4.0 4.0 4.0
x = dnput() recibe el valor '2' y lo guarda en x '2! 4.0 4.0 4.0

(termina el bloque indentado) 2! 4.0 4.0 4.0
while x != 'fin': mientras x no es 'fin' (asi es) 12! 4.0 4.0 4.0

(inicia el bloque indentado) 12! 4.0 4.0 4.0
este_num = float(x) convierte x en flotante '2! 4.0 2.0 4.0
if num_previo == None: si num_previo es None, pero no lo es '2! 4.0 2.0 4.0
media = (este_num + num_previo) /2 |asigna a media el valor 3.0 '2! 4.0 2.0 3.0
print(media) imprime: 3.0 12! 4.0 2.0 3.0
num_previo = este_num asigna a num_previo el valor 2.0 '2! 2.0 2.0 3.0
x = dnput() recibe el valor 'fin' y lo guarda en x 'fin!' 2.0 2.0 3.0

(termina el bloque indentado) 'fin!' 2.0 2.0 3.0
while x != 'fin': mientras x no es 'fin', pero es 'fin' 'fin' 2.0 2.0 3.0

(termina el programa) 'fin!' 2.0 2.0 3.0

Problema 4 -- Tipo solemne
Escriba un programa que reciba un string. Este string consistird en nimeros separados por espacios. Su
programa debera imprimir cada nimero en lineas separadas.

Caso 1. Input: Caso 2. Input: Caso 3. Input: Caso 4. Input:
123 24 55 15 12345 30512 9652 391904
Output: Output: Output: Output:
123 15 1 30512
24 2 9652
55 3 391904
4
5
Solucioén

Algoritmo. Vamos a recorrer el string recibido de izquierda a derecha, como si moviésemos un cabezal sobre

una cinta. Vamos a hacer esto: si estamos ante un digito, agregamos este digito a nuestro buffer
(necesitaremos una variable para esto); si no es digito, imprimiremos el buffer en pantalla (asumimos que
contiene digitos) y lo vaciamos.

La figura de abajo muestra esto para el input 103 7 45; el cabezal se marca en amarillo.

Cadena Buffer
[1]of3] [7] [4]5]

Cadena Buffer
l1fof3] [7] Ja]s] [1]
Cadena Buffer
(1]of3] [7] Ja]s5] [1]0]
Cadena Buffer
l1]of3] [7] Ja[s] [1]0]3]
Cadena Buffer
l1]of3] [7] [a]s]

Cadena Buffer
l1jof3] [7] Jafs] |[7]
Cadena Buffer
(1]of3] 7] J4a]s]

Cadena Buffer
l1fof3] [7] Jafs]| [4]
Cadena Buffer
l1]of3] [7] |4]5] [4]5]
Cadena Buffer
l1fof3] [7] [4]5] [4]5]

Imprime 103

Imprime 7

Imprime 45

Como nuestro algoritmo revisa cada caracter del string de entrada, yendo de izquierda a derecha, usaremos
for. La variable que usaremos para construir la respuesta, buffer, la inicializaremos con el string vacio.
Comenzamos escribiendo:

entrada = input()
buffer = "!
for c in entrada:

En el bloque indentado del for, escribimos: si ¢ es un digito, lo agregamos al buffer. O sea:

entrada = input()
buffer = '
for c in entrada:
if c.isdigit():
buffer = buffer + c

Pero si ¢ no es un digito (en este caso, seria un espacio), entonces imprimimos el buffer y luego lo vaciamos:

entrada = input()
buffer = '
for c in entrada:
if c.isdigit():
buffer = buffer + c
else:
print(buffer)
buffer = '

Finalmente, quedara algo en el buffer al terminar el for. Por eso, volvemos a imprimir el buffer luego de
concluida la repeticion:

entrada = input()
buffer = '
for c in entrada:
if c.isdigit():
buffer = buffer + c
else:
print(buffer)
buffer = "'
print(buffer)

Ese es nuestro cédigo ya terminado.

