
Cátedra 18 -- PRÁCTICA PARA LA SOLEMNE

Problema 1 -- No es tipo solemne
Conteste en el espacio indicado a qué término se refiere cada definición.
Operación de pegar dos strings:
Tipo de valor al que corresponden True y False:
Sangría desde el lado izquierdo de las líneas:
La instrucción elif es la contracción de:
Tipo de valor al que corresponden 0, 1, 2, etc:
En castellano decimos subcadena, en inglés es:
La instrucción while se lee en castellano como:
Método para contar subcadenas dentro de un string:
Método que cuenta cuántos caracteres tiene un string:
Método que verifica si un string consiste sólo de dígitos:

Problema 2 -- Tipo solemne
Escriba un programa que reciba una cantidad indefinida de números y que los multiplique. El programa
deberá dejar de recibir inputs una vez que reciba el input FIN.

Caso 1. Inputs:
10
50
FIN

Output:
500

Caso 2. Inputs:
7
FIN

Output:
7

Caso 3. Inputs:
25
5
5
FIN
Output:
625

Caso 4. Inputs:
11
11
FIN

Output:
121

Problema 3 -- No es tipo solemne

x = input()
num_previo = None
while x != 'fin':

este_num = float(x)
if num_previo == None:

num_previo = este_num
media = (este_num + num_previo)/2
print(media)
num_previo = este_num
x = input()

A continuación escriba qué imprime este programa
ante los inputs 7, 1, 4, 4, 2, fin.

Problema 4 -- Tipo solemne
Escriba un programa que reciba un string. Este string consistirá en números separados por espacios. Su
programa deberá imprimir cada número en líneas separadas.

Caso 1. Input:
123 24 55
Output:
123
24
55

Caso 2. Input:
15
Output:
15

Caso 3. Input:
1 2 3 4 5
Output:
1
2
3
4
5

Caso 4. Input:
30512 9652 391904
Output:
30512
9652
391904

RESPUESTAS

Aquí van las soluciones con comentarios.

Problema 1 -- No es tipo solemne
Conteste en el espacio indicado a qué término se refiere cada definición.

Operación de pegar dos strings: CONCATENACIÓN
Concatenar y concatenación son palabras que hemos usado recurrentemente en el curso. Como
recordaremos, concatenar significa conectar dos cadenas, ya que, etimológicamente, catena quiere
decir cadena. De hecho, castellano, concatenar es sinónimo de encadenar.

Tipo de valor al que corresponden True y False: bool (o booleano)
Llamamos booleanos a los valores de verdad, en honor al matemático-logicista George Boole.

Sangría desde el lado izquierdo de las líneas: INDENTACIÓN
El término indentación es de uso típico del mundo editorial. Se refiere a la distancia entre el texto y el
lado izquierdo de la hoja.

La instrucción elif es la contracción de: else + if

Tipo de valor al que corresponden 0, 1, 2, etc: int (entero)
En Python, el nombre exacto es int, que es abreviatura de integer o integral, que significa entero.

En castellano decimos subcadena, en inglés es: SUBSTRING
Recordemos que string se traduce como cadena en castellano, cuando hablamos de computación.

La instrucción while se lee en castellano como: MIENTRAS

Método para contar subcadenas dentro de un string: count
Este método se usa así: para contar las ocurrencias del string x dentro del string y, escribimos:
y.count(x). Aquí, x e y pueden ser variables o directamente los strings. Por ejemplo, podemos escribir
"Solemne 1".count("e") para recibir el valor 2.

Método que cuenta cuántos caracteres tiene un string: len
La función len es esencial para contar el largo de cosas en Python. Así, len("Solemne 1") nos devuelve
9 (7 letras en Solemne, 1 dígito, 1 espacio).

Método que verifica si un string consiste sólo de dígitos: isdigit
Por ejemplo, "1234".isdigit() nos devuelve True, mientras que "Solemne".isdigit() nos devuelve False.

Problema 2 -- Tipo solemne
Escriba un programa que reciba una cantidad indefinida de números y que los multiplique. El programa
deberá dejar de recibir inputs una vez que reciba el input FIN.

Caso 1. Inputs:
10
50
FIN

Output:
500

Caso 2. Inputs:
7
FIN

Output:
7

Caso 3. Inputs:
25
5
5
FIN
Output:
625

Caso 4. Inputs:
11
11
FIN

Output:
121

Solución

Vayamos escribiendo el código paso a paso. El código recién agregado irá resaltado.

¿Qué queremos? Calcular una multiplicación de varios números. Por lo tanto, debemos crear una variable
para calcular (construir) nuestra respuesta, y esta variable debe iniciar valiendo 1.

r = 1

Ojo, si esta variable iniciara con el valor 0, nos arruinaría todo, pues cualquier cosa multiplicada por cero nos
da cero. Esto no ocurre si iniciamos con el valor 1.

Como recibimos una cantidad indefinida de números (que son inputs), entonces necesitamos un while. Y
vamos a repetir mientras no recibamos el string "FIN". Actualizamos el código:

r = 1
while x != "FIN":

Hemos usado x en la guarda del while, ¡pero no hemos definido esta variable! Como se refiere a los inputs,
corregimos:

r = 1
x = input()
while x != "FIN":

Ya, veamos que el while es básicamente un if, pero que se vuelve a evaluar hasta que la guarda se hace False.
Por eso, si x! = "FIN", entonces x debe ser un número entero (per enunciado). Convertimos x en entero y lo
guardamos en la variable n:

r = 1
x = input()
while x != "FIN":

n = int(x)

Pero ese número entero n (tipo int) no nos sirve ahí. Nosotros queremos actualizar r, que es nuestra variable
de respuesta; debemos multiplicarla por n. Por ende:

r = 1
x = input()
while x != "FIN":

n = int(x)
r *= n

Ahora vemos que no estamos pidiendo inputs otra vez. Sólo hemos pedido un input al principio. Para volver a
pedir un input, lo agregamos al final del bloque indentado del while. Como usamos para variable x para los
inputs:

r = 1
x = input()
while x != "FIN":

n = int(x)
r *= n
x = input()

Presto! Ahora nos queda presentar la respuesta que hemos construido. Esto lo hacemos al final de nuestro
código:

r = 1
x = input()
while x != "FIN":

n = int(x)
r *= n
x = input()

print(r)

En resumen, el código queda como:

r = 1
x = input()
while x != "FIN":

n = int(x)
r *= n
x = input()

print(r)

Este código ha sido completado.

Problema 3 -- No es tipo solemne

x = input()
num_previo = None
while x != 'fin':

este_num = float(x)
if num_previo == None:

num_previo = este_num
media = (este_num + num_previo)/2
print(media)
num_previo = este_num
x = input()

A continuación escriba qué imprime este programa
ante los inputs 7, 1, 4, 4, 2, fin.

Solución

Es muy importante ser capaces de interpretar código por nuestra propia cuenta. Esto quiere decir que
debemos ser capaces de ejecutar el código línea por línea y tener un registro de cómo se actualizan sus
variables.

La solución en este caso es:

7.0
4.0
2.5
4.0
3.0

No hay más outputs (prints) ejecutados por el programa.

Siendo muy detallados, la siguiente tabla reproduce, línea por línea, qué ocurre con el programa.

Instrucción Descripción x num_previo este_num media

x = input() recibe '7' y lo guarda en x '7' -- -- --

num_previo = None define num_previo con el valor None '7' None -- --

while x != 'fin': mientras x no es 'fin' (así es) '7' None -- --

(inicia el bloque indentado) '7' None -- --

este_num = float(x) convierte x en flotante '7' None 7.0 --

if num_previo == None: si num_previo es None, y lo es '7' None 7.0 --

num_previo = este_num asigna a num_previo el valor de este_num '7' 7.0 7.0 --

media = (este_num + num_previo)/2 asigna a media el valor 7.0 '7' 7.0 7.0 7.0

print(media) imprime: 7.0 '7' 7.0 7.0 7.0

num_previo = este_num asigna a num_previo el valor 7.0 '7' 7.0 7.0 7.0

x = input() recibe el valor '1' y lo guarda en x '1' 7.0 7.0 7.0

(termina el bloque indentado) '1' 7.0 7.0 7.0

while x != 'fin': mientras x no es 'fin' (así es) '1' 7.0 7.0 7.0

Instrucción Descripción x num_previo este_num media

(inicia el bloque indentado) '1' 7.0 7.0 7.0

este_num = float(x) convierte x en flotante '1' 7.0 1.0 7.0

if num_previo == None: si num_previo es None, pero no lo es '1' 7.0 1.0 7.0

media = (este_num + num_previo)/2 asigna a media el valor 4.0 '1' 7.0 1.0 4.0

print(media) imprime: 4.0 '1' 7.0 1.0 4.0

num_previo = este_num asigna a num_previo el valor 1.0 '1' 1.0 1.0 4.0

x = input() recibe el valor '4' y lo guarda en x '4' 1.0 1.0 4.0

(termina el bloque indentado) '4' 1.0 1.0 4.0

while x != 'fin': mientras x no es 'fin' (así es) '4' 1.0 1.0 4.0

(inicia el bloque indentado) '4' 1.0 1.0 4.0

este_num = float(x) convierte x en flotante '4' 1.0 4.0 4.0

if num_previo == None: si num_previo es None, pero no lo es '4' 1.0 4.0 4.0

media = (este_num + num_previo)/2 asigna a media el valor 2.5 '4' 1.0 4.0 2.5

print(media) imprime: 2.5 '4' 1.0 4.0 2.5

num_previo = este_num asigna a num_previo el valor 4.0 '4' 4.0 4.0 2.5

x = input() recibe el valor '4' y lo guarda en x '4' 4.0 4.0 2.5

(termina el bloque indentado) '4' 4.0 4.0 2.5

while x != 'fin': mientras x no es 'fin' (así es) '4' 4.0 4.0 2.5

(inicia el bloque indentado) '4' 4.0 4.0 2.5

este_num = float(x) convierte x en flotante '4' 4.0 4.0 2.5

if num_previo == None: si num_previo es None, pero no lo es '4' 4.0 4.0 2.5

media = (este_num + num_previo)/2 asigna a media el valor 4.0 '4' 4.0 4.0 4.0

print(media) imprime: 4.0 '4' 4.0 4.0 4.0

num_previo = este_num asigna a num_previo el valor 4.0 '4' 4.0 4.0 4.0

x = input() recibe el valor '2' y lo guarda en x '2' 4.0 4.0 4.0

(termina el bloque indentado) '2' 4.0 4.0 4.0

while x != 'fin': mientras x no es 'fin' (así es) '2' 4.0 4.0 4.0

(inicia el bloque indentado) '2' 4.0 4.0 4.0

este_num = float(x) convierte x en flotante '2' 4.0 2.0 4.0

if num_previo == None: si num_previo es None, pero no lo es '2' 4.0 2.0 4.0

media = (este_num + num_previo)/2 asigna a media el valor 3.0 '2' 4.0 2.0 3.0

print(media) imprime: 3.0 '2' 4.0 2.0 3.0

num_previo = este_num asigna a num_previo el valor 2.0 '2' 2.0 2.0 3.0

x = input() recibe el valor 'fin' y lo guarda en x 'fin' 2.0 2.0 3.0

(termina el bloque indentado) 'fin' 2.0 2.0 3.0

while x != 'fin': mientras x no es 'fin', pero es 'fin' 'fin' 2.0 2.0 3.0

(termina el programa) 'fin' 2.0 2.0 3.0

Problema 4 -- Tipo solemne
Escriba un programa que reciba un string. Este string consistirá en números separados por espacios. Su
programa deberá imprimir cada número en líneas separadas.

Caso 1. Input:
123 24 55
Output:
123
24
55

Caso 2. Input:
15
Output:
15

Caso 3. Input:
1 2 3 4 5
Output:
1
2
3
4
5

Caso 4. Input:
30512 9652 391904
Output:
30512
9652
391904

Solución

Algoritmo. Vamos a recorrer el string recibido de izquierda a derecha, como si moviésemos un cabezal sobre
una cinta. Vamos a hacer esto: si estamos ante un dígito, agregamos este dígito a nuestro buffer
(necesitaremos una variable para esto); si no es dígito, imprimiremos el buffer en pantalla (asumimos que
contiene dígitos) y lo vaciamos.

La figura de abajo muestra esto para el input 103 7 45; el cabezal se marca en amarillo.

Cadena Buffer
1 0 3 7 4 5

Cadena Buffer
1 0 3 7 4 5 1

Cadena Buffer
1 0 3 7 4 5 1 0

Cadena Buffer
1 0 3 7 4 5 1 0 3

Cadena Buffer
1 0 3 7 4 5 Imprime 103

Cadena Buffer
1 0 3 7 4 5 7

Cadena Buffer
1 0 3 7 4 5 Imprime 7

Cadena Buffer
1 0 3 7 4 5 4

Cadena Buffer
1 0 3 7 4 5 4 5

Cadena Buffer
1 0 3 7 4 5 4 5 Imprime 45

Como nuestro algoritmo revisa cada caracter del string de entrada, yendo de izquierda a derecha, usaremos
for. La variable que usaremos para construir la respuesta, buffer, la inicializaremos con el string vacío.
Comenzamos escribiendo:

entrada = input()
buffer = ''
for c in entrada:

En el bloque indentado del for, escribimos: si c es un dígito, lo agregamos al buffer. O sea:

entrada = input()
buffer = ''
for c in entrada:

if c.isdigit():
buffer = buffer + c

Pero si c no es un dígito (en este caso, sería un espacio), entonces imprimimos el buffer y luego lo vaciamos:

entrada = input()
buffer = ''
for c in entrada:

if c.isdigit():
buffer = buffer + c

else:
print(buffer)
buffer = ''

Finalmente, quedará algo en el buffer al terminar el for. Por eso, volvemos a imprimir el buffer luego de
concluída la repetición:

entrada = input()
buffer = ''
for c in entrada:

if c.isdigit():
buffer = buffer + c

else:
print(buffer)
buffer = ''

print(buffer)

Ese es nuestro código ya terminado.

